题目链接
题解
对于一对(a,b)(a,b)(a,b)满足a+b∣aba+b\mid aba+b∣ab,假设d=gcd(a,b),a=xd,b=ydd=\gcd(a,b),a=xd,b=ydd=gcd(a,b),a=xd,b=yd,那么
xd+yd∣xyd2x+y∣xydx+y∣d xd+yd\mid xyd^2\\ x+y\mid xyd\\ x+y\mid d xd+yd∣xyd2x+y∣xydx+y∣d 设m=⌊n⌋m=\lfloor\sqrt{n}\rfloorm=⌊n⌋答案就是∑j=1m∑i=1j−1⌊ni+j⌋[gcd(i,j)=1]=∑d=1mμ(d)∑j=1⌊m/d⌋∑i=1j−1⌊nd2(i+j)⌋ \begin{aligned} & \sum_{j=1}^{m}\sum_{i=1}^{j-1}\lfloor\frac{n}{i+j}\rfloor [\gcd(i,j)=1]\\ = & \sum_{d=1}^{m}\mu(d)\sum_{j=1}^{\lfloor m/d\rfloor}\sum_{i=1}^{j-1}\lfloor\frac{n}{d^2(i+j)}\rfloor \end{aligned} =j=1∑mi=1∑j−1⌊i+jn⌋[gcd(i,j)=1]d=1∑mμ(d)j=1∑⌊m/d⌋i=1∑j−1⌊d2(i+j)n⌋ 复杂度大概是O(n3/4)O(n^{3/4})O(n3/4)的,这个请大家自行证明。代码
#include#include #include int read(){ int x=0,f=1; char ch=getchar(); while((ch<'0')||(ch>'9')) { if(ch=='-') { f=-f; } ch=getchar(); } while((ch>='0')&&(ch<='9')) { x=x*10+ch-'0'; ch=getchar(); } return x*f;}const int maxn=65536;int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10];int getprime(){ p[1]=mu[1]=1; for(int i=2; i<=maxn; ++i) { if(!p[i]) { prime[++cnt]=i; mu[i]=-1; } for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j) { int x=i*prime[j]; p[x]=1; if(i%prime[j]==0) { mu[x]=0; break; } mu[x]=-mu[i]; } } return 0;}long long calc(int n,int d){ long long ans=0; for(int i=1; i<=d; ++i) { int t=n/i; for(int l=i+1,r; (l<(i<<1))&&(l<=t); l=r+1) { r=std::min((i<<1)-1,t/(t/l)); ans+=1ll*(r-l+1)*(t/l); } } return ans;}int n,s;int main(){ getprime(); n=read(); s=sqrt(n); long long ans=0; for(int i=1; i<=s; ++i) { ans+=mu[i]*calc(n/i/i,s/i); } printf("%lld\n",ans); return 0;}